開源學村

Python 科學數據分析初步

進行科學數據分析,並不一定要用那些昂貴的工具,你也可以試試這些「能幹」的開源工具。

你或許是一個科學數據分析領域的新手,你可能有一些數學或者計算機基礎,你也可能來自完全不相關的領域,但是別擔心,數據科學能提供一切你所需要的。並且你不需要那些昂貴、特殊的企業版軟體——在這篇文章中介紹的這些開源工具都將成為你的選擇。

Python,它的機器學習和數據科學庫(pandas,Keras,TensorFlow,scikit-learn,SciPy,NumPy 等等),和它的擴展的可視化列表庫(Matplotlib,pyplot,Plotly 等等)對於初學者和專家等來說都是出色的開源工具。簡單易學、普及率高、有社區提供支持,並且內置了最新的庫和數據科學所用到的演算法,這些工具都能給剛開始工作的你帶來很大的幫助。

很多Python庫都繼承自某一個基礎庫(就是我們所熟知的依賴關係),而在科學數據分析領域,最基礎的便是 NumPy 這個庫。它專為數據科學分析設計,NumPy 庫經常用於儲存數據集中的關係型數據部分,這部分數據儲存在它的 ndarray 類型中。這種數據類型便於存儲來自關係型數據表(如 csv 或其他格式的文件)中的數據,反之亦然。當 scikit 庫中的函數應用於多維數組的時候,其便利性就體現得更加明顯。如果只是進行數據查詢,那麼SQL語言是很好的工具,但是對於複雜和資源密集型科學數據操作就顯得蹩腳了,而把數據存儲在 ndarray 中則可以提高效率和速度(但這種優勢只在處理大量數據時才能顯現出來)。當你開始用 pandas 來進行知識抽取和分析的時候,pandas 中的 DataFrame 數據類型與 NumPy 中的 ndarray 之間的強強聯合會形成用於知識抽取和計算密集型操作的有力工具。

為了快速說明問題,讓我們打開 Python 的 shell ,然後載入一個關於犯罪分析的數據集,這個數據集使用 pandas 的 DateFrame 類型存儲,讓我們來初探這個被載入的數據集。

>>>  import   pandas as  pd
>>>  crime_stats   =  pd.read_csv('BPD_Arrests.csv')
>>>  crime_stats.head()

現在,在這個 pandas 的 DataFrame 類型數據集中,我們可以運用 SQL 查詢語句進行大多數查詢。例如,得到所有「Description」屬性的唯一值,SQL 查詢是這樣的:

$  SELECT  unique(「Description」)   from   crime_stats;

在 pandas 的 DataFrame 裡面實現相應功能的語句是這樣的:

>>>  crime_stats['Description'].unique()
  ['COMMON   ASSAULT'   'LARCENY'   'ROBBERY   - STREET'    'AGG.   ASSAULT'
   'LARCENY   FROM   AUTO'   'HOMICIDE'   'BURGLARY'   'AUTO    THEFT'
   'ROBBERY   - RESIDENCE'   'ROBBERY   - COMMERCIAL'   'ROBBERY   - CARJACKING'
   'ASSAULT   BY  THREAT'   'SHOOTING'   'RAPE'   'ARSON']

這樣的話就會返回一個 NumPy 數組(ndarray):

>>>  type(crime_stats['Description'].unique())

之後,我們來把數據傳遞給一個神經元網路模型,來看看它的預測到底有多準確。給它一個類似的數據如犯罪時間,犯罪類型,和它發生的相關種種:,讓它預測其用了哪種類型的武器,代碼如下:

>>>  from   sklearn.neural_network   import   MLPClassifier
>>>  import   numpy   as np
>>>
>>>  prediction   =  crime_stats[[『Weapon』]]
>>>  predictors   =  crime_stats['CrimeTime',   『CrimeCode』,   『Neighborhood』]
>>>
>>>  nn_model   =  MLPClassifier(solver='lbfgs',   alpha=1e-5,   hidden_layer_sizes=(5,
2),   random_state=1)
>>>
>>>predict_weapon   =  nn_model.fit(prediction,   predictors)

現在,學習模型已經準備完畢,我們可以進行一些測試來估計它的預測質量和穩定性。讓我們先從一些訓練用的測試數據開始(這部分的原始數據是用來訓練模型的,而不是用於創建模型的):

>>>  predict_weapon.predict(training_set_weapons)
  array([4,   4,   4,   ..., 0,   4,   4])

如你所看到的那樣,它會返回一個列表,每一個數據都是一個預測結果,表示一種武器,對應訓練數據集中的一條記錄。我們看到數字,而不是武器名,這是因為它和大多數分類演算法一樣,為分析大量數據而做出了優化。

對於數組數據,我們有多種方法將數字轉換成能被我們直觀理解的描述形式(如武器名)。在這個例子中,運用的技術是 LabelEncoding ,用的是 sklearn 中 preprocessing 庫中的 LabelEncoder 函數:
preprocessing.LableEncoder()。它可以對數據進行相關的轉換和逆轉換。在這個例子中,我們用了 LabelEncoder() 中的 inverse_transform 函數來看看武器 0 和 4 分別代表了什麼:

>>>  preprocessing.LabelEncoder().inverse_transform(encoded_weapons)
  array(['HANDS',   'FIREARM',   'HANDS',   ..., 'FIREARM',   'FIREARM',   'FIREARM']

這些數據看起來很有意思,但是並沒有得到這個模型的預測準確度是多少,我們來進行一些計算以得到其百分比:

>>>  nn_model.score(X,   y)
  0.81999999999999995

這些數據顯示出了我們的神經網路模型有將近82%的精確性。這的確是一個精確到令人印象深刻的結果,但是我們也不要忘了更換不同的數據集來測試他的有效性。這裡列舉了一些其他類型的測試,如:相互關係、模糊測試、矩陣測試等等。這些都可以用於測試模型的有效性。然而,雖然我們的模型具有很高的精確度,但是這對普通的犯罪數據集並不是很有用。就像我們用的這個數據集一樣,這個數據集中使用「槍支」這一類武器的記錄非常多,那麼無論我們之後輸入何種數據,預測結果都會更加偏向於使用「槍支」。

在我們分類之前清除數據、消除離群數據和畸變數據是很重要的。預處理越好,我們的精確度就越高。同樣,通過給模型/分類器塞過量數據來提高精確度(高於90%)是很不理智的,因為這樣非但不能達到目的,還會造成過度擬合。

如果你想用互動式圖形界面代替命令行,那麼 Jupyter notebooks 是一個很好的選擇。雖然大多數的事情在命令行中都能處理得很好,但當你開始用 snippets 來生成可視化時,就能體會到 Jupyter 給你帶來的好處。它可以把數據整理的比終端還好。

這篇文章給了大家一些機器學習的免費資源,當然也有大量的其他手冊和教程可供大家選擇。當然你也會發現,網上也有許多不同種類的開源數據集,想要使用哪一個完全取決於你自己的興趣愛好。在開始的時候,數據集是由Kaggle維護的,而且那些在官方靜態網站上的出色的資源是可以下載的。


本文由 紛寂 翻譯。更多詳情請訪問原文鏈接。
原文鏈接:https://opensource.com/article/18/3/getting-started-data-science
本文鏈接:https://linuxstory.org/getting-started-data-science/
轉載請註明來自 LinuxStory ,否則必究相關責任!

對這篇文章感覺如何?

太棒了
1
不錯
1
愛死了
0
不太好
0
感覺很糟
0

You may also like

Leave a reply

您的電子郵箱地址不會被公開。 必填項已用 * 標註

此站點使用Akismet來減少垃圾評論。了解我們如何處理您的評論數據

More in:開源學村

開源學村

2022年,從學習Rust開始

Rust作為一個新語言,已經連續五年(2016,2017,2018,2019,2020)在Stack Overflow開發者調查的「最受喜愛編程語言」。Rust是一個值得學習的編程語言,它對安全的專註,會幫助你許多。學習Rust 從這本小小的Rust Cheat Sheet出發,了解Rust語言的基本操作。
開源學村

使用 Linux 命令行解決Wordle 問題

你可以使用 Linux 的 grep 命令和 fgrep 命令來解決Wordle 問題(進行篩選排除),grep 命令使用正則表達式進行搜索,fgrep 命令也像 grep 一樣搜索文本,但不使用正則表達式,grep 和 fgrep 命令在掃描單詞列表時提供了極大的靈活性。
開源學村

如何殺死 Linux 中的殭屍進程

在使用操作系統工作時,要時刻注意保持對系統中進程的掌控。一旦殭屍進程佔滿了你的資源,就只能依靠重新啟動來挽回一切了。所以快來學慣用 kill 指令來殺滅殭屍進程吧!